
SMART CONTRACTS REVIEW

January 27th 2025 | v.	1.0

score

100

PASS
Zokyo Security has concluded that

these smart contracts passed a

security audit.

Security Audit Score

Zokyo Audit Scoring $REAL

1

$REAL Smart Contract Review

1. Severity of Issues:

 - Critical: Direct, immediate risks to funds or the integrity of the contract. Typically, these
would have a very high weight.

 - High: Important issues that can compromise the contract in certain scenarios.

 - Medium: Issues that might not pose immediate threats but represent significant
deviations from best practices.

 - Low: Smaller issues that might not pose security risks but are still noteworthy.

 - Informational: Generally, observations or suggestions that don't point to vulnerabilities
but can be improvements or best practices.

2. Test Coverage: The percentage of the codebase that's covered by tests. High test
coverage often suggests thorough testing practices and can increase the score.

3. Code Quality: This is more subjective, but contracts that follow best practices, are well-
commented, and show good organization might receive higher scores.

4. Documentation: Comprehensive and clear documentation might improve the score, as it
shows thoroughness.

5. Consistency: Consistency in coding patterns, naming, etc., can also factor into the score.

6. Response to Identified Issues: Some audits might consider how quickly and effectively
the team responds to identified issues.

Scoring Calculation:

2

$REAL Smart Contract Review

Let's assume each issue has a weight:

- Critical: -30 points

- High: -20 points

- Medium: -10 points

- Low: -5 points

- Informational: -1 point

Starting with a perfect score of 100:

- 0 Critical issues: 0 points deducted 
- 2 High issues: 2 resolved = 0 points deducted 
- 3 Medium issues: 3 resolved = 0 points deducted

- 1 Low issue: 1 resolved = 0 points deducted

- 1 Informational issue: 1 resolved = 0 points deducted
 

Thus, the score is 100

3

$REAL Smart Contract Review

This document outlines the overall security of the $REAL smart contract/s evaluated by the
Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the $REAL smart contract/s codebase
for quality, security, and correctness.

There were 0 critical issues found during the review. (See Complete Analysis)

Contract Status

low Risk

Testable Code

94.67% of the codebase is covered by tests.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract/s but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the $REAL team put in place a bug
bounty program to encourage further active analysis of the smart contract/s.

100%75%50%25%0%

your average

INDUSTRY STANDARD

4

$REAL Smart Contract Review

9Complete Analysis

27Code Coverage and Test Results for all files written by Zokyo Security

7Executive Summary

8Structure and Organization of the Document

5Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

5

$REAL Smart Contract Review

Within the scope of this audit, the team of auditors reviewed the following contract(s):

TokenStaking.sol

The source code of the smart contract was taken from the $REAL repository:  
Repo: https://github.com/bltzr-gg/realbet/tree/master/apps/evm-contracts 

Last commit - da2cca37c1c1b5beff4db428b39456a17a2d5d56

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most recent vulnerabilities;

Meets best practices in code readability, etc.

https://github.com/bltzr-gg/realbet/tree/master/apps/evm-contracts

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contract/s by industry leaders.

03 Testing contract/s logic against common
and uncommon attack vectors.

04 Thorough manual review of the
codebase line by line.

6

$REAL Smart Contract Review

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of $REAL smart contract/s. To do so, the code was reviewed line by line by
our smart contract developers, who documented even minor issues as they were discovered.
Part of this work includes writing a test suite using the Foundry testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

7

$REAL Smart Contract Review

Executive Summary

The TokenStaking contract is a staking system that extends the ERC20 token standard while
incorporating features such as epoch-based rewards, tiered staking, and governance
integration. Built using OpenZeppelin's libraries, it employs ReentrancyGuard and
AccessControl for security and role-based permissions. The contract allows users to stake a
specified ERC20 token (TOKEN) into predefined tiers, each with a unique lock period and
multiplier. These tiers determine the "effective amount" of tokens, which influences reward
distribution. Rewards are distributed on an epoch basis and can be configured dynamically
by authorized roles. The contract includes functionality to stake tokens, claim rewards, and
unstake after the lock period. It tracks the total effective supply over time and adjusts
rewards accordingly. A voting mechanism is integrated to encourage user participation in
governance.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the $REAL team and the $REAL team is aware of it, but they have chosen to not solve
it. The issues that are tagged as “Verified” contain unclear or suspicious functionality that
either needs explanation from the Client or remains disregarded by the Client. Furthermore,
the severity of each issue is written as assessed by the risk of exploitation or other
unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

8

$REAL Smart Contract Review

9

$REAL Smart Contract Review

Complete Analysis

Findings summary

Resolved

Resolved

Resolved

High

Low

Medium

RiskTitle# Status

Resolved

Resolved

Medium

Resolved

Resolved

3

High

Medium

Informational

1

Rewards Loss on Unstaking

5

7

2

6

4

Logical Error in Transfer Validation

Updated Tier State Should Not Be Applied For Pre -
Update Stakes

Lock Period Validation Logic Duplication

Reward Claiming Fails Due to Invalid Epoch Handling

Missing Event Emission in Administrative Functions

Users Cant Stake For Epoch 0

10

$REAL Smart Contract Review

High-1 Resolved

Logical Error in Transfer Validation

The _update function checks if both from and to are address(0) to disallow transfers,
which is logically incorrect. Therefore, A user could still burn their tokens.  

function _update(address from, address to, uint256 value) internal override {  
// End-users cannot transfer or burn their tokens  
if (from != address(0) && to != address(0))  
{  
revert TransferNotAllowed(); 
 }

Recommendation:

Update the condition in _update.

High-2 Resolved

Reward Claiming Fails Due to Invalid Epoch Handling

The TokenStaking contract's reward claiming functionality is failing due to improper handling
of epoch validation. Specifically, the contract is rejecting attempts to claim rewards for valid
epochs, throwing an InvalidEpoch() error.

Steps to Reproduce
 Deploy the TokenStaking contrac
 Stake tokens for a use
 Set rewards for future epoch
 Move time forward to a future epoc
 Attempt to claim rewards for epochs after the stake was created

Expected Behavior:

The contract should allow claiming rewards for all epochs after the stake was created,
starting from the epoch immediately following the stake creation.

11

$REAL Smart Contract Review

Actual Behavior:

The contract throws an InvalidEpoch() error when attempting to claim rewards, even for
seemingly valid epochs.

Potential Cause:

The issue likely stems from how the contract determines valid epochs for reward claiming. It
appears that the contract is incorrectly validating the epochs passed to the
calculateRewards function.

Relevant Code:

12

$REAL Smart Contract Review

Potential Fix:

Review and adjust the epoch validation logic in the calculateRewards function. Ensure that it
correctly handles the initial case where lastClaimEpoch is 0 (for newly created stakes) and
allows claiming rewards for all valid epochs after stake creation.

Additional Notes:

This bug significantly impacts the core functionality of the staking contract, preventing users
from claiming their rightfully earned rewards. It's crucial to address this issue promptly to
ensure the proper operation of the staking system.

Proof of Concept:

13

$REAL Smart Contract Review

14

$REAL Smart Contract Review

15

$REAL Smart Contract Review

16

$REAL Smart Contract Review

17

$REAL Smart Contract Review

18

$REAL Smart Contract Review

19

$REAL Smart Contract Review

20

$REAL Smart Contract Review

21

$REAL Smart Contract Review

22

$REAL Smart Contract Review

Recommendation:

 Thoroughly review the epoch validation logic in the calculateRewards function
 Consider adding more detailed error messages to help diagnose specific validation

failures
 Implement comprehensive unit tests covering various epoch scenarios, including edge

cases
 After fixing, conduct a thorough review of all functions that interact with epochs to

ensure consistent behavior across the contract.

Medium-1 Resolved

Rewards Loss on Unstaking

If a user unstakes their tokens before claiming rewards, the _claimRewards function is not
invoked, and the user loses unclaimed rewards. This could lead to significant user
dissatisfaction and financial loss.

Recommendation:

Include a check in the unstake function to ensure all rewards are claimed before allowing
unstaking. Alternatively, automatically claim rewards during the unstaking process.

23

$REAL Smart Contract Review

Medium-2 Resolved

Users Cant Stake For Epoch 0

When staking the following code is executed to push the stake into the userStakes array →

Recommendation:

For epoch 0 assign 0 as the lastClaimEpoch.

But if the current epoch is 0 , the currentEpoch - 1 line of code would revert resulting in
users not being able to stake in the first epoch . Also , from the code it is evident that users
are intended to stake at the 0th epoch i.e. in updateTotalEffectiveSupply function it is
checked if current epoch > 0 , indicating that epoch 0 is intended to hold an effective supply.

24

$REAL Smart Contract Review

Medium-3 Resolved

Updated Tier State Should Not Be Applied For Pre - Update Stakes

UserA stakes at time period t and chose the tierIndex = 1 to stake , this was because tier1
seemed most appropriate to user1 , after some time the admin decides to update the tier1
and thus calls setTier() with a new set of lockPeriod and multiplier . This new set of values
might be too high/low for the original user and when checking values , for example when
unstaking →

Recommendation:

Use the original stake information instead for users staked pre - update.

The new updated lockPeriod would be used instead of the one that was assigned when user
staked , this can be non-intentional for the user.

 Low-1 Resolved

Missing Event Emission in Administrative Functions

The setEpochDuration and setDefaultEpochRewards functions allow administrators to
modify critical parameters of the staking mechanism, but they do not emit any events when
invoked.

Recommendation:

Add event emissions to these functions to log parameter updates.

25

$REAL Smart Contract Review

Informational-1 Resolved

Lock Period Validation Logic Duplication

The unstake function manually checks the lock period using an inline condition instead of
reusing the isLocked function. This leads to redundant code and increased maintenance
overhead.

Recommendation:

Replace the inline condition with a call to isLocked.

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

TokenStaking.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

26

$REAL Smart Contract Review

Ran 28 tests for test/TokenStaking.t.sol:TokenStakingTest
[PASS] testCalculateRewardsInvalidEpoch() (gas: 297700)

[PASS] testCalculateRewardsInvalidStakeIndex() (gas: 315777)

[PASS] testCalculateRewardsWithVoting() (gas: 318887)

[PASS] testCannotSetRewardForPastEpoch() (gas: 22604)

[PASS] testCannotStakeZeroAmount() (gas: 17537)

[PASS] testClaimRewardsInvalidStakeIndex() (gas: 322173)

[PASS] testDeployment() (gas: 17626)

[PASS] testGetCurrentEpoch() (gas: 17781)

[PASS] testGetRewardsForEpoch() (gas: 43843)

[PASS] testGetRewardsForEpochFallback() (gas: 86127)

[PASS] testGetTotalEffectiveSupplyAtEpochForFilledEpochs() (gas: 417346)

[PASS] testGetTotalEffectiveSupplyAtEpochForFutureEpochs() (gas: 281514)

[PASS] testIsLockedInvalidStakeIndex() (gas: 275684)

[PASS] testSetDefaultEpochRewards() (gas: 48182)

[PASS] testSetEpochDuration() (gas: 17586)

[PASS] testSetRewardEmitsEvent() (gas: 43319)

[PASS] testSetRewardForCurrentEpoch() (gas: 43230)

[PASS] testSetRewardForFutureEpoch() (gas: 43449)

[PASS] testSetTier() (gas: 66212)

[PASS] testSetTierAddNew() (gas: 115010)

[PASS] testSetTierEmitTierAdded() (gas: 98162)

[PASS] testSetTierEmitTierUpdated() (gas: 29110)

[PASS] testSetTierUpdateExisting() (gas: 29513)

[PASS] testSetTierZeroMultiplier() (gas: 12493)

[PASS] testStakeInvalidTierIndex() (gas: 95299)

[PASS] testTransferNotAllowed() (gas: 279181)

[PASS] testUnstakeInvalidStakeIndex() (gas: 286718)

[PASS] testUnstakeLockPeriodNotEnded() (gas: 465736)
Suite result: ok. 28 passed; 0 failed; 0 skipped; finished in 50.91ms (34.92ms CPU time)

As a part of our work assisting $REAL in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Foundry testing framework.

The tests were based on the functionality of the code, as well as a review of the $REAL
contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code Coverage and Test Results for all files

27

$REAL Smart Contract Review

28

$REAL Smart Contract Review

Ran 18 tests for test/TokenStakingFuzz.t.sol:TokenStakingFuzzTest
[PASS] testFuzzCannotSetRewardForPastEpoch(uint256,uint256) (runs: 259, μ: 24465, ~: 24465)

[PASS] testFuzzCannotStakeZeroAmount(uint32) (runs: 257, μ: 53028, ~: 53028)

[PASS] testFuzzDeployment(address,address) (runs: 265, μ: 3282945, ~: 3282945)

[PASS] testFuzzGetCurrentEpoch(uint256) (runs: 261, μ: 19163, ~: 19163)

[PASS] testFuzzGetRewardsForEpoch(uint256) (runs: 264, μ: 44672, ~: 44672)

[PASS] testFuzzGetRewardsForEpochFallback(uint256,uint256) (runs: 264, μ: 85264, ~: 85264)

[PASS] testFuzzSetDefaultEpochRewards(uint256) (runs: 265, μ: 40408, ~: 40408)

[PASS] testFuzzSetEpochDuration(uint256) (runs: 261, μ: 18225, ~: 18225)

[PASS] testFuzzSetRewardEmitsEvent(uint256) (runs: 264, μ: 44093, ~: 44093)

[PASS] testFuzzSetRewardForCurrentEpoch(uint256) (runs: 264, μ: 44516, ~: 44516)

[PASS] testFuzzSetRewardForFutureEpoch(uint256,uint256) (runs: 259, μ: 45346, ~: 45346)

[PASS] testFuzzSetTier(uint256,uint256,uint256) (runs: 263, μ: 125090, ~: 126232)

[PASS] testFuzzSetTierAddNew(uint256,uint256) (runs: 261, μ: 117399, ~: 117399)

[PASS] testFuzzSetTierEmitTierAdded(uint256,uint256) (runs: 261, μ: 99096, ~: 99096)

[PASS] testFuzzSetTierEmitTierUpdated(uint256,uint256,uint256) (runs: 265, μ: 71249, ~: 70990)

[PASS] testFuzzSetTierUpdateExisting(uint256,uint256) (runs: 261, μ: 60459, ~: 60470)

[PASS] testFuzzSetTierZeroMultiplier(uint256,uint256) (runs: 263, μ: 18200, ~: 18329)

[PASS] testFuzzUnstakeInvalidStakeIndex(uint256) (runs: 265, μ: 321355, ~: 321355)

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

All Files

FILE % STMTS

94.67

94.67

% BRANCH

91.30

91.30

% FUNCS

100

100

% Lines

95.45

95.45

TokenStaking.sol

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug bounty
program to encourage further analysis of the smart contract by third
parties.

$REAL

$REAL

